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1. INTRODUCTION

Detection of stochastic signals in Gaussian or nonGaussian noise is a valid

model for many important signal detection problems. In some of these problems.

the noise is very nonstationary and the signal cannot be represented as a set of

narrowband components. Many examples can be given of applications where such

problems arise; they abound in such areas as sonar and radar. In these

situations, methods based on spectral analysis, assumptions of stationarity.

approximations by matched filtering, etc. are all likely to be unsatisfactory.

Ideally, one would use signal detection algorithms based on the

likelihood ratio. The main difficulty when the noise is Gaussian is that the

finite-dimensional distributions of the signal-plus-noise process are

typically unknown. This is especially true when the signal-plus-noise process

is nonGaussian. so that its distribution cannot be characterized by its

covariance and mean functions. This difficulty has led to the use of various

suboptimum procedures. typically based on second-moment criteria.

However, for a significant class of problems involving stochastic signals

in Gaussian noise, one can give a likelihood-ratio-based detection algorithm

which does not require knowledge of the finite-dimensional distributions of

the signal-plus-noise process. The development in descriptive fashion of such

an algorithm (in two versions) is the principal content of this chapter.

In addition to discussion of signal detection for stochastic signals in

Gaussian noise, a much shorter discussion will be given for detection in

nonGaussian noise of a Gaussian mixture type. These results build upon those

obtained for detection in Gaussian noise.

2. PRIOR WORK

Likelihood-ratio-based signal detection results for problems involving
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Gaussian noise have largely involved a few special cases:

(1) A known signal, for which the matched filter is a likelihood ratio test

statistic [1]. [2]. and signals known except for phase and amplitude [1],"

[2].

(2) A Gaussian signal-plus-noise process, for which quadratic-plus-linear

operations are optimum [3]. [4].

(3) A possibly nonGaussian signal when the noise is a Wiener nrner ss [5i-rq.

(4) A possibly nonGaussian signal in Gaussian noise when signal and noise are

independent [6], [10].

Category (1) above is not of primary interest here.

Category (2) contains a class of problems that is often encountered in

applications such as sonar. The implementation of a likelihood-ratio detection

algorithm for discrete-time data requires knowledge of only the covariance

matrices and mean vectors of the noise and signal-plus-noise processes. It is

frequently possible to obtain good estimates of the noise covariance matrix;

the noise is always present in typical applications, and sufficiently slowly-

varying in its statistical properties to enable a good estimate to be made of

its covariance matrix; the mean is frequently zero. We shall assume

throughout this chapter that the noise covariance can be retiabLg obtained and

that the noise has zero mean. It is quite a different matter for the signal-

plus-noise covariance and mean. The signal is frequently present for only

relatively short periods, and its properties may be changing too rapidly to

enable one to obtain a reasonable estimate of its covariance and mean.

This problem of determining the covariance and mean of the signal-plus-

noise process limits the usefulness of the likelihood ratio in many

applications for which category (2) holds. However. even if one is able to
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determine these quantities, the Gauss-vs.-Gauss model is too restricted to

effectively model many real-world situations.

Categories 3 and 4 are of most interest in the present context. With

regard to (3), actual use of a likelihood-ratio detection algorithm has been

limited by the fact that conditions for its application are rarely satisfied.

The Wiener process has very unusual properties, not encountered in

applications such as sonar or radar. For example, a Wiener process has sample

paths that are almost surely non-differentiable at every time point t; also,

the process is a martingale and a Markov process. These properties, even

singly, are typically not found in applications. Algorithms based on the

assumption of Wiener process noise are thus very unlikely to perform in a

satisfactory fashion.

As for (4), conditions for existence of a likelihood ratio (nonsingular

detection) have been given [6], [10]. The results of [10] also show how one

can in principle determine the likelihood ratio when it exists. However, the

knowledge required in order to actually carry this out will seldom be

available, comprising as it does the finite-dimensional distributions of the

signal.

Since signal-plus-noise probability distributions are so difficult to

obtain, suboptimum procedures not requiring this knowledge have been

extensively used. The deflection criterion gives a condition for optimality

which dates back to at least the early 1940's [11]. The criterion requires

one to specify a class of admissible test statistics, T. The deflection of T

in 5' is defined by D(T) = [E s+NT - - where ES+N(-) and

EN(*) denote expectation with respect to signal-plus-noise and noise,

respectively. Deflection is used as the measure of performance. For the case

where the operations on the data are assumed to be quadratic-plus-linear, and

where the noise is Gaussian, solutions for the optimum operations under this
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criterion were given in [12] and [13]. In this form, the solution requires

only knowledge of the mean and the covariance of the signal-plus-noise

process. If the signal-plus-noise process is also Gaussian, then the

likelihood ratio yields a quadratic-plus-linear operation as a test statistic.

However, this likelihood-ratio test statistic is not the same quadratic-plus-

linear operaticn as that obtained using the deflection criterion, although

there are some interesting relations between the two [13].

It should be noted that the Gaussian problem does not necessarily yield a

bounded quadratic-linear operation for the infinite-dimensional problem [3];

similarly, the supremum of the deflection over all bounded quadratic-linear

operations may not be achievable [13].

For a more detailed summary of results mentioned above, and additional

references, see [14].

3. OPTIMUM DETECTION OF STOCHASTIC SIGNALS IN GAUSSIAN NOISE

3.1. Introduction

Detection of stochastic signals imbedded in Gaussian or near-Gaussian

noise is a common problem in such areas as sonar or radar. The prevalence

arises because of physical properties of the medium and the signal source; see

[15], [16] and the references given there for examples and discussion in sonar

applications. The importance of the problem has been long-recognized;

solutions have lagged behind. Of course, one model for which detection

algorithms are well-known is that of a signal known except for phase and

amplitude. This is not, however, a sufficiently rich class of signal

processes to adequately model many of the important sonar-radar problems.

Ideally, one would have a detection algorithm having the following

properties:
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(1) Likelihood-Ratio-Based. Monotone functions of the likelihood ratio are

optimum test statistics undcr a variety of criteria [1].

(2) Information-Preserving. Test statistics based on independent sampling of

thn data will in general destroy information contained in the continuous-

time waveform. A continuous-time algorithm should be obtained, then

approximated as closely as possible by a discrete-time algorithm for

digital implementation.

(3) Implementable. An abstract expression for the likelihood ratio, based on

mathematical quantities that cannot be obtained in applications, is

useless as a detection algorithm. The same comment applies to test

statistics whose implementation depends upon an unrealistically-detailed

knowledge of the physical environment.

(4) Adaptive. The algorithm should have the capability of adapting to

changes in the environment or the signal source.

Two algorithms will now be described. One meets all four of the criteria

mentioned above. The second is not adaptive, and requires more prior

information than the first, but is more powerful when it can be implemented.

The development will follow the path along which the algorithms were

originally obtained. A fixed Gaussian noise (Nt) is considered; one is

attempting to detect a signal imbedded in this noise. The development begins

by considering the general continuous-time problems.

First, a characterization is given of processes (Y t) for which the

likelihood ratio of Y w.r.t. N exists. Conditions are then given that

guarantee existence of a likelihood ratio. Next, assuming that these

sufficient conditions are satisfied, representations of likelihood ratios are

obtained. These results are all for the continuous-time problem. In current

practice, detection algorithms will typically be Implemented in digital for-t
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after sampling. This requires that the continuous-time likelihood ratio be

approximated, and procedures for implementation of a detection algorithm

specified. This is the next step in the development, with a partially-

recursive formulation. Two versions of the algorfthm are given.

The development can be given in several forms and at various levels of

complexity. We have elected to give the framework and results for the general

continuous-time problem in precise mathematical language. However, the proofs

are only summarized, with references to the original paper [17] for the

detailed versions.

Some discussions and interpretations of the main results for the

continuous-time problem are also included.

The development of the discrete-time approximation results in an

implementable algorithm based upon the continuous-time likelihood ratio. Our

objective in that section is to reach those readers who may have an interest

in actually implementing a detection algorithm. Thus, this part can be read

without serious reference tj the development for the continuous-time analysis.

However, the results on approximation and implementation cannot be fully

appreciated without keeping in mind that they are derived from an analysis of

the continuous-time problem that makes no significant limiting assumptions on

the properties of either the noise or the signal-plus-noise processes, and

that the discrete-time algorithm is obtained as an approximation to a

continuous-time log-likelihood ratio.

The reader interested In genuine engineering applications can find

discrete-time implementations of detection algorithms in Section 3.5.

For the continuous-time problem, the basic setup is as follows. (Nt) and

(Yt), t in [0.1]. are real-valued stochastic processes on (9.,1,P). (Nt) is

Gaussian, m.s. continuous, separable, and vanishes a.s. (almost surely) at
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t = 0. V and vN are the induced measures on I[O1], the set of all

real-valued functions on [0,1]. py and wN are the induced measures on L2 [0, 1]

(when (Yt) has paths a.s. in T 2[0.1]). pN is assumed to have

infinite-dimensional support. The following problems are considered.

(1) Determine conditions for existence of the likelihood ratios dry/dvN and

dpy/dj'N;

(2) When absolute continuity holds, find dvy/dvN and dwy/dAN.

The interval [0.1] is selected only for convenience; the results hold for

any finite interval.

3.2. Mathematical preliminaries

All stochastic processes will be real-valued and defined on a probability

space (f0-4,P) with index set [0.1]. unless otherwise noted. For a stochastic

process (V )I a0 (V) will denote the a-field generated by {V , s t}, and
t t

at(V) its P-completion. O(V) and a(V) are the corresponding filtrations:

ok; = Ici . t, ' t , 1}. Lt (V) is Lhe cloed linea, span in L2 [P] of {V.

s t}.

Let _(Y) be the completed filtration determined by a stochastic process

(Yt). The predictable a-field ![_(Y)] is the smallest a-iicld ir. !2x[0,l]

containing all sets of the form {(w,t): X(wt) E A}, where A is any Borel set

in IR and (X t) is any process adapted to a(Y) and having continuous (w.p. 1)

paths. A stochastic process (W t) is a(Y)-predictable if the map (w.t) -*

W((.t) is ![.(Y)]A/[IR] measurable.

(Nt) will denote a Gaussian process that is m.s. (mean-square)

continuous, separable with respect to closed sets, zero-mean, and vanishes

(with probability one) at t = 0. We assume WLOG that . is the smallest

a-field containing _(N): A = al(N).

Book - 2/14/90 - 7



For measures T and -r defined on the same a-field d. T << I (T absolutely

continuous w.r.t. i) if for all sets A in al such that if i(A) = 0. one has

also T(A) = 0. T - I (T equivalent to i) if v(A) = 0 <=> T(A) = 0.

For a positive integer M < . A will be the Borel a-field of 0 under

the product topology. C0[0.1] = C0 is the set of all real-valued functions

that are continuous on [0.1] and vanish at t = 0. C is endowed with the sup

norm topology, and C is the resulting Borel a-field, also generated by the

evaluation maps (V , 0 < t I}. -W (x) = x The Borel a-field of C! is ICM4

t t L0

the product a-field of M copies of (C. IRO'1] is the space of real-valued

functions on [0.1] and 40'13 is the a-field in IR ['1 generated by the

cylinder sets (x: (x(t).. ..x(tn)) E An} for n 1. tI. . .tn in [0.1]. and

An E IB[n.

E(-) will denote mathematical expectation; the underlying measure will be

clear from the context.

The approach used here makes extensive use of the spectral (Cramnr-Hida)

representation of (Nt) and its properties [18]. [19]. (Nt) has a proper

canonical representation, which we assume to have the form

M t
Nt((j) = I f Fi(t.s)Bi(w.ds). (2.1)

10

Without the assumption that (Nt) is Gaussian. the Bi's are zero-mean

orthogonal-increment processes, mutually orthogonal and m.s. continuous.

Their nondecreasing variances EB2( -) define Borel measures on [0.1] in the

usual way: Pi(a.b] = EB2(b) - EB2(a); moreover. 3 << 13i for i 1. Each

F1 : [0.1] x [0.1] -* IR is Borel-measurable. Fi(t.x) = 0 for x > t. and

M 1 11 f f F2(t's)dPi(s)dt < ®.

1=1 0 0

M < - is the multiplicity of (Nt).
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The proper canonical representation (2.1) has the property that L t(N) =

Lt(B) for all c in [0.1]. and that =l foFi(t's)gi(s)d3 i(s) = 0 for all t in

[0.1] if and only if g 0 in L2[13i]. all I M. Thus {Fi(t.- ) . t E [0.1])

spans L2[130]

The representation (2.1) is an equality in the mean-square sense, thus

holds a.e. dP for each fixed t. However. taking both sides of (2.1) separable

w.r.t. closed sets gives path equality a.e. dP.

The assumption that (N t) is Gaussian further implies that the B. 's are a

Gaussian family; thus they are mutually independent, have independent

increments, and hence can be assumed to be path-continuous. Moreover,

equality of L t(N) and L t(B) implies that t(N) = t (B), for all t in [0.1].

Each (Bi(t)) is a martingale w.r.t. a(B), from the independence of the B. 's.

and thus also w.r.t. u(N) and w.r.t. c(N) v a(V), where (V t) is any stochastic

process independent of (N ).

M is the multiplicity of (N t). We assume throughout, unless otherwise

noted, that M < -. An extension of the results given here to Gaussian

processes of infinite multiplicity would require some results on infinite-

dimensional stochastic calculus that are not readily available.

For a vector stochastic process (V ) having paths a.s. in CM PV will
-t 0' _

denote the induced measure on CM: P (A) = PoV- 1 (A). where V is the path map.
0 V(A A.weeVi h ahmp

Similarly. if (V t) is a scalar process, then vV will be the probability

induced on 1[0,1] by the process. If (Vt) is measurable and has paths a.s. in

22[0,1 (Lebesgue square-integrable functions on [0.1]) then 1V is the induced

measure on the Borel a-field of L2[0,1] and V will denote the path map of Q

into L2 [O.1].

We ass,,me WLOG that support (P = CMO and that supp(pN) = L2 [O.1]. Since

these measures are Gaussian, their supports are closed linear manifolds equal
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to the closure of the ranges of their covariance operators [20]. One can thus

always work with this subspace; it preserves the original linear space

structure under the original norm (and .inner product, for L2 [0,1]).

The represei.tation (2.1) and the usual properties of a m.s. continuous

process generate a family of real separable Hilbert spaces. For a m.s.

continuous process (Vt), let HV denote its RKHS (reproducing kernel Hilbert

space), with inner product <'-.> V" Let rV be the covariance function of (V

and RV its (trace-class) covariance operator in L2 [0,l]; RV can be represented

as an integral operator with rV as its kernel. All elements in HV are

continuous functions on [0,1]. RV defines a Hilbert space HV of L2 [Ol]

elements, consisting of range(R % ) together with the inner product

<h.g>^ = . <gUn><h.u n/Pn
V n

where {pn n > 1) and {un. n > 1) are the non-zero eigenvalues and associated

orthonormal eigenvectors of RV. and <-,-> is the L2[0.1] inner product. Since

it is assumed that support(liN) = L2[0.1]. the eigenvalues {>n , n > 1} of RN

are all non-zero and the associated orthonormal eigenvectors are complete in
M

L2[O.1 ] . For L2[i , i M, already defined. H will denote (i lL

functions f of the form f = (f1,f2 . . . . . . . Y with each fi in L2[10i]. and with

inner product of f and g given by 9M=i1 ff(s)gi(s)di(s). Unitary maps

between these Hilbert spaces are described in the following lemma.

Lemma 3.1. Define the following linear maps.

I: HN +N . U1g = [g].

uhere [g] is the equivalence class in L2 [O.I ] generated by g.
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M 1

U2: H - HN , [U2g](t) I f Ft(t.s)gi(s)W3 (s).
t=l 0

where g = (g1 . M).

U: L1(N) + HN. U3 Nt t

t
U : H -HB. (Uo).(t) = f gi(s)dat(s).

0

Then: the maps UI , U2 , U and U are unitary.

Corollary. Let be the vector function with tth component f (s) =

Coolay LeiL
f F.(su)d,6.(u). Then f is in H and <f', fs> = 6 EB.(t)B.(s) for all
Oii.t t N t sNij ti.

tij X and st in [0,1].

For the main results to be discussed below, a sketch of each proof will

be given. For the sake of illustration, we will assume in each sketch that

(Nt) has multiplicity M = 1 and that B1 = B is the standard Wiener process,

EB2(-,t) = t. Thus, N(t) = ftF(t.s)dB(s). This assumption of unit

multiplicity and B1 the Wiener process is only used in the sketches to

simplify the illustration. The detailed proofs are in [17].

Theorem 3.1. For t M. let (#t(t)) be a measurable stochastic process

with paths a.s. in V2[0t]i . DeFine a vector process (Zt) with paths a.s.

in e- b

t
Z t(t) = f #t(x)d+l(x) + B,(t)

0

and stochastic processes (St) and (Yt) by

Mt Mtst = I I Ft(t.s)#,(s)cW,(s). Yt I f F,(ts)dZ,(s)"

10 10
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Then there exists 4i: CM -, [R I ] that is TM,1'~0 1 measurable. and
0

such that

(1) For alt t in [0,1], N t(() = Wt (,,)]) a.s.dP(, );

(2) If P z « PB' then for all t in [0.1]. Yt(W) = V-t[z)]) a..s.

dP(.).

Moreover, there exists a map 4I: CM- -+ L2 [O.1] such that 4 is Borel-

measurable, and

(11) N( ) = $1 [_(,)] a.e. dP(,):

(2i) If « PB' then X(w) = tl[Z(w)] a.e. dP(,).

If (Ne) has continuous paths. then there exists a map t2: C 0

which is O measurable. and

(12) N(w) = t2 [_(w)] a.e. dP(w);

(2I2 ) I Pz " PB' then Y(,) = 2 [Z(" )] a.e. dP().

None of the statements of this theorem require that (Nt) be

Gaussian, nor that the multiplicity 1 be finite.

Remarks. As noted, the results of Theorem 3.1 do not require that (N t) be

Gaussian. However, when (Nt) is Gaussian. and one further assumes that ( i)

is u(B)-adapted for I M, then PZ <€ PB ([7], Theorem 7.2). Thus, the

relations given in (2). (21), and (22) all hold in this case.

Sketch of Proof. Since EN2 = IIF(t.)II 12 the map t -+ F(t.-) is uniformlySktc o Pof.SiceE t  L 21[0,1]'

continuous as a map from [0,1] into L2[O,1]. F(-.. ) can thus be approximated

by simple functions and F(t,*) by functions equal to F(T,-) on the interval
2n

In~ ]k-1. !Sk] , for k 2 n . F(t.-) can thus be approximated by sets of

simple functions.
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For every simple function s(x) = 2i iciI ai.bi](x) and every real-valued

function f: [0.1] R. one can define a functional

m
Qs: f -+ I ci[f(bi) - f(ai)].

i=l

A map In: C0[0.1] -+ RO' 1] . induced by F. is then defined as follows: on

InX kt n[f] - fn(f). where - is the function Qs when the simple function s isn ns

an approximation to F(-.k )

The second-order properties of B are then sufficient to ensure that ( n)

converges in probability with respect to P with the limit being a measurable

map 41. t is then shown to have the desired properties. 0

Theorem 3.1 is a key tool for obtaining the results to follow. Formally.

of course, one can write N as the result of a mapping F on the space of

continuous functions such that N = FB. Intuitively this makes sense: in the

proper canonical Cram~r-Hida representation, a t(N) = g (B) for all t in [0.1].

Theorem 3.1 gives both existence and precision to this heuristic notion. It

should perhaps be noted that the mapping 1: CM IR0 '11 gives a version of
0give

(Nt) from (Bt); similarly. 4 gives a version of (Xt) from dt

3.3. Absolute Continuity (Existence of the Likelihood Ratio)

In this section several results are given for existence of a likelihood

ratio. If one has a process (Yt ), interpreted as signal-plus-noise, then a

likelihood ratio will exist if the measure induced by (Y t) is absolutely

continuous with respect to the measure induced by (N t). In signal detection

terminology, this means that if the probability of false alarm of any test

statistic is equal to zero, then the probability of detection for that test

statistic is also equal to zero.
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We will first give conditions that are necessary for existence of a

likelihood ratio. These conditions characterize the processes (Yt) such that

dvy/dv N and d±y/d N exist.

Theorem 3.2. Let (Vt) be a stochastic process independent of (N).

Suppose that (Yt) is a process such that vy <*< vN.

If (Yt) is adapted to _(N) v _(V). then Yt = St + N* a.e. dP for

each fixed t in [0.1], where (N) has the same finite dimensional
t

distributions as (Nt), and is adapted to a(Y). N = I ftF(t~s)dB*(s)
t t i= 10 'i

a.e. dP. each fixed t in [0.1]. where the B 's are mutually independent

zero-mean Gaussian process, (B) has the same law as (Bt), and
t -t

o(_B ) = a(N ). Moreover,

Mt
St = Y F.(t-s)O.

t=l 0

where (0t(t)). t M. is a stochastic process that is _(Y)-predictable

and has paths a.s. in f2[P ].

Remark. Use of the filtration a(N) v a(V) permits application of these

results to problems in several areas involving feedback. For example, in

information theory, the "message" (V t) can be a stochastic process independent

of the channel noise (Nt); the transmitted signal depends in a causal manner

on this message and the channel output, which is of the form Yt = St + Nt'

where S t = f[V sYs, s t] with f a "coding" function. Thus, one needs that

(St) be adapted to _(V) v a(N). In the present context, this filtration is

important for signal detection purposes. The message process (Vt) is usually

independent of the ambient noise, although the eventual received signal

process may depend on both (V t) and (N t). For example, in active sonar

problems where reverberation is the dominant noise component, the transmitted
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waveform is affected by the reverberation-causing scatterers between the

transmitter and the target as it travels through the water, as is the eventual

reflection from the target as this reflected waveform travels toward the

receiver. Since (Yt) will eventually represent signal-plus-noise, it is

obviously important that (Y t) be adapted to a(V) v c(N).

Sketch of Proof. Let D denote the likelihood ratio (Radon-Nikodym derivative)

of Vy with respect to oN. evaluated at the path N({) = {N(w.t), t E [J,1]}.

The conditional expectation E[Dlat(N)] has a representation as a stochastic

integral with respect to B, since, by the proper canonical Cram~r-Hida

representation, a t(N) = a t(B). Let g be the function resulting from this

integral representation. Using Girsanov's theorem, one obtains a Brownian

motion G. in terms of B and g. with respect to the probability Q defined by

dQ = DdP. To represent Y as a signal imbedded in additive noise, one must

express G. B. and g as N. Y, and s. s being the "derivative" of the signal.

This is done by using the predictability properties of g. 0

Theorem 3.2 states that when there is absolute continuity for Y with

respect to N. then Y has a signal-plus-noise representation, Y = S + N. It

should be carefully noted that N is a process with the same family of finite-

dimensional probability distributions as N. therefore the same law on 1[0.i]

However. (Nt) is adapted to a(Y). This is a fact of major importance.

Roughly, it states that Y has a signal-plus-noise representation where the

noise is a measurable function of the original noise and of the message

process (represented by a(V) in Theorem 3.2). However, since the likelihood

ratio of Y w.r.t. N depends only on laws induced by the two processes, and not

on the measurability (adaptation properties), the fact that N* is a function

of message and original noise does not affect the likelihood ratio. In sum.
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the likelihood ratio of Y with respect to N* is the same as that of Y with

respect to N. This fact will be used later to partially justify the form of

the likelihood ratio used in the discrete-time approximation.

Theorem 3.2 contains necessary conditions for existence of a likelihood

ratio. We now turn to sufficient conditions.

Theorem 3.3. Let (Vt) be a stochastic process independent of (N ).

Suppose that (St) is a stochastic process adapted to a(N) v a(V) and with

paths a.s. in HN.

(1) If Yt = St + Nt a.e. dP. for each fixed t in [0.I]. then vy «< vN .

(2) If Yt = St + Nt a.e. dtdP. then «y << Ji"

Sketch of Proof. Since the signal has paths which are almost surely in the

reproducing kernel Hilbert space of the noise, for almost every (, there is

(with respect to Lebesgue measure) an equivalence class of functions [s in

L2 [0-1] such that

t
S(,t)= I F(t.x)Es ](x)dx.

0

The main step in the proof consists in showing that one can choose a

representative s in each class Is W] such that the resulting process (s )

s(W.t) E s (t), is a predictable stochastic process, thus has adequate

smoothness properties.

Once this is done, one turns to the well-known absolute continuity

properties of translates of Wiener processes. Theorem 3.1 permits one to

write N = 4[B], where N is a version of Y and 1: Co[O.1 ] -R0',] is

measurable. The above representation for (St) gives PZ < < PB' where Z(w.t)=

fos(,tt)dt + B(w,t). and by Theorem 3.1 again, one has a version Y of Y

defined by Y = O[Z]. Since v- = Vy and = vN. the result follows. 0
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The results of Theorem 3.3 are those that will be used to obtain a

detection algorithm for applications. They are also conditions that one may

hope to verify for actual physical problems. For example, they show that the

likelihood ratio will exist if the signal process has all (with probability

one) sample paths belonging to the RKHS of the noise, and if the signal

process up to time t (all t in [0,1]) can be obtained as a function of the

signal and noise up to time t. These are conditions that one may expect to be

satisfied. They are actually stronger than the sufficient conditions given in

Theorem 3.3, since those conditions assume only that (S t) is adapted to the

completed filtration a(V) v o(N), rather than the uncompleted filtration

!Z (V) v ! (N). It is well-known [21] chat when (St) is adapted to

2 0(V) V Q (N), then for each t. S t can be expressed (with probability one) as

S( ,t) = Gt[V((j.. N(w.)], where Gt is a Borel-measurable map on RIO"] that

acts only on V(w,.) and N(w.-) up to time t.

We have been separately considering conditions for existence of

likelihood ratios for measures induced on I 0 .1] and for measures induced on

L2 [0.1]. In addition, if (Nt) has continuous paths, one my wish to consider

existence of the likelihood ratio for the measures induced on the space of

continuous functions. In the next result, relations are drawn for the

existence of these several likelihood ratios.

Theorem 3.4. (1) Suppose that (Y t) is separable for closed sets and

adapted to a(N) v a(V). Then Vy << vN => (Yt) a.s. in T 2 [o.I] and

P << P N" The converse is false.

(2) Suppose that (Nt) has continuous paths, and let (Yt) be any

process with continuous paths. Define X y and XN to be the induced

measures on C. Then
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"y vN <=> y N <=> y AIN

UN « y <=> 2N << \Y <-> IN << 1Y.

These equivalenccs do not require that (Nt) be Gaussian or that N0 = 0

a.s. dP.

Sketch of Proof. (1) The representation of Y as a signal embedded in additive

noise given in Theorem 3.2 holds almost surely at every fixed time point. The

separability assumption then produces pathwise equality, and consequently,

since the signal is continuous and the noise mean-square continuous, the

observation has paths in e210,1]. One then applies Theorem 3.3 to obtain the

first statement; the converse is proved by using an example involving a known

signal.

(2) The natural injection map i0 : Co0O .1] -* R[0, ] is V/* measurable, and

this is enough to yield those assertions which pertain to absolute continuity

for the spaces I[0,13 and Co[O.1]. Those regarding Co[O.1] and L2[O,1] follow

from a theorem due to Kuratowski which states that Borel-measurable 1:1 maps

between complete separable metric spaces carry Borel sets into Borel sets

[22]. and the observation that CO[O.] can be continuously injected into

L2[O, 1]. a

The following result illustrates some of the subleties contained in the

statements of Theorem 3.2. In particular, this result shows that the

sufficient conditions of Theorem 3.3 are not also necessary for absolute

continuity.

Theorem 3.5. Let (Nt) be any m.s. continuous zero-mean Gaussian process

on (0.1]. Suppose that (Yt) is a process adapted to o(V) v a(N). where

(Vt) is independent of (Nt). If Vy << vN (resp.. 'y << N). then it is
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not necessary that Y, = St + Nt a.e. dP for each ftxed t tn [0.1]. where

(St) ts adapted to a(V) v a(N) and has almost all paths tn HN (resp.,

HN). If (Nt) and (Yt) have continuous paths, then such a representation

ts not necessary for Xy << X -

Sketch of Proof. Let Y be equal to V + N. V Gaussian, independent of N. It

is possible to choose V such that absolute continuity obtains while the paths

of V are not (with probability one) in the reproducing kernel of the noise:

the covariance of V yields an integral operator of the form R'TR with T

Hilbert-Schmidt. but not trace-class. 0

6.4. Likelihood Ratios

In this section, general expressions for likelihood ratios are obtained

under the assumption that the sufficient conditions of Theorem 3.3 are

satisfied. First, a result on the (regular) conditional probability of B

given N is obtained when N is viewed as a map into R 0 '1]. Such a conditional

probability exists, since (Bt) takes its path values in the complete separable

metric space CM while (Nt) is defined on the same underlying probability space

(01, ,P) as (Bt) [23].

Let T = tn...t } C ]0.1] be a strictly ordered set of p[n]
n  I t p(n)

elements, for every n in IN. and T = Un 1lTn
. The sets T are increasing and

chosen so that T is dense in [0,1]. If S is a finite or countable set in

[0.1] whose elements are ordered as 1Sl2.S3 .... I and f is a function defined

on [0,1]. then wS is the map defined by the relation

Wsf = (f(s),f(s2 ),f(s 3 ) ....).

e is the map defined on R which retains the first n components of every

sequence. I will be the element of 0 I L2[ 3] having ith component given by
Boo -2ene9 I19

Book - 2/14/90 -19



I[O.t] and with all other components zero. Finally. RNn is the covariance

matrix of the Gaussian vector wT N.
n

In the course of this'development. we obtain "inverses" to the maps t.

t1, and t2 defined in Theorem 3.1. These inverses are crucial to defining

likelihood ratios.

Theorem 3.6. The condittonat Law Q(f.') of B given that N = f is given

by the relation

'(f.C) = Ic(E[f..J). vN - a.e. f.

where m is a continuous Gaussian stochastic process defined on

(I[IO1]. 1[0.I], VN) which has the same law as B with respect to P. m is

the weak limit of a sequence {m . n E IN} of continuous Gaussian

stochastic processes defined on (IRIO 01 , 4[0,I] UN) which have

components given by the relation

m= U2I' R - (e oW )>lf't]= <wT'n 2 " N,n pen] T 'p[n ] '

1 t M U 2 is defined in Lemma 3.1). Moreover. [mot](g) = g a.e.

P B (c).

Sketch of Proof. One first notices that it suffices to compute the

conditional law of B with respect to N, where B and N are vectors obtained by

sampling B and N at a dense and countable set of time points. The problem is

further reduced to a finite-dimensional one by restricting attention to

cylinder sets. One then uses the usual formulae for conditional laws of

Gaussian random variables, and then attempts a limiting procedure.

The limiting procedure succeeds for the following reasons. Let B and N-n -p

be the finite-dimensional Gaussian vectors obtained in the reduction outlined
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above. The conditional law of B ngiven N phas a mean m npwhich depends on

N p, and a covariance I 2 which does not. One must then observe that the

elements of the mean and the covariance can be expressed in terms of finite-

dimensional projections in the reproducing kernel Hilbert space of the noise

N. The time points being dense and N being mean-square continuous ensure that

these projections converge to the identity. The mean np produces a

continuous Gaussian process which has a weak limit m., with respect to P N' and

mn is the point at which the mass of the conditional law of B given N is

concentrated. Finally, the fact that mo~b(c) = c a.e. dP B(c) follows from

martingale equalities. Since this is not contained in [17], its proof will

now be given in full.

By Theorem 3.1. with v i [](t) =_ci(t). one has

P (c in C[O.1J: sup Iri[(MO§)(f1)](t) - Ti[s](t)I > al

=P(cj: sup I(iON~o~w])(t) - Bi(w.t)l > al.

where (N ) is a version of (N ). N (w) = N ((J) = T t[B(w)] a.e. dP(ci) for each
t t t t t

fixed t. By Theorem 3.6. in has w.r.t. .vN the same law as B, so that

((MONo[w])(t) - B1(c,t)) is a continuous square-integrable mrtingale. This

gives

P{W: sup I(iof[i])(t) - B i(Cw't)I > a}.

1 -EI(~oN)(1) - Bi(l)l 2

1 - [E(inio-)2c1) + EB2(1) -2E(mioi() 1 l]

It now suffices to show that E(inioN)(l)Bi(1) = 3(l). mioiN(l) is the limit in

L 2[dP] of m oN(l), where [m ox](l) = wT f'. e[ >. Thus,
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E(mioN)(l)Bi(l) = im E(moN)(l)B1 (1)
n

n tnPin] t t

= rni m n(ik) i F1 (t .s)dPi(s) f kF(tn.v)di(v)
n kj=l 0 0

= lf1112 = 2 (0) n

We now go to the final step in the general continuous-time detection

problem: specification of the likelihood ratio when absolute continuity

exists.

Theorem 3.7. Suppose that (Vt) is a stochastic process independent of

(Nt), and that (S t) is a stochastic process adapted to o(N) v o(V) with

almost all paths tn HN. Then St = L=XIJFt(t.s),t(s)4t (s). where

(Ot(s)) is c(N) v a(V)-predtctable and has paths a.s. in 2 [ Lt]. Define

(Z) to be the e- process with Lth component given by Zi(t,() =t t ( s "

$o,(s~w)d4t(s) + Bt(t.w). PZ << P and St + Nt =rhnt )dZ(

(1) Suppose Y, = St + Nt a.e. dP. for each fixed t tn [0.1]. Then

[dvy/dvN](y) = [dPz/dPB](_ny) a.e. dvN(y). where m is defined as tn

Theorem 3.6.

(2) Suppose Y, = St + Nt a.e. dtdP. Then [dYdCN](X) =

[dPz' %](Mx ) a.e. dJiN(x). where m(y) tn C has as its tth component

[ )It(t = .I <Y.e >< .e >/N.

(3) Suppose that Y, = St + Nt a.e. dP for each t tn [0,1]. and that

(Nt) and (Yt) have conttnuous paths. Then [dL>y/dJN](x) = [dPz/dPB](Etox)

a.e. dN(x). where m is defined in (2) and to: C[o[OI 1] L2 [0,I] is the

tnjectton map.
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Sketch of Proof. This is a direct consequence of the fact that the maps m

defined in Theorem 3.6 and part (2) of Theorem 3.7 act as inverses of the maps

4 and '1" The map m of part (1) was shown above to satisfy moD(c) = c a.e.

dPB(c). For the map m of part (2). the fact that moll(c) = c a.e. dPB(c) is

proved by using the fact that PB is Gaussian and the definition of m. 0

Corollary. Under the hypotheses of xrt (2) of Theorem 3.7, Mil(X) = x,

a.e. dPB(x), with t, as defined in Theorem 3.1 and m as defined in part

(2) of Theorem 3.7.

In obtaining conditions for existence of the likelihood ratio, the maps D

and DI defined in Theorem 3.1 filled an essential role. Theorem 3.7 shows

that their inverses (the m maps) play a correspondingly-essential role in

specifying the form of the likelihood ratios.

Explicit representations for the likelihood ratio dPz/dPB can be obtained

from known results, since ( t) has independent components that are path-

continuous Gaussian martingales with respect to u(N) v a(V). See, for

example, [9]. It will be noted that although the proofs of absolute

continuity require the proper canonical representation of (N t), the results do

not require that this decomposition be known. This is a non-trivial

consideration, since determining the decomposition is well-known to be a very

difficult problem. However, the explicit expressions for the likelihood

ratios do require knowledge of the proper canonical representation. This

constitutes a significant problem in obtaining an implementable discrete-time

detection algorithm based on the continuous-time likelihood ratio.

The first main objective has now been achieved: beginning with a Gaussian

noise of a very general type, conditions have been obtained for existence of

the likelihood ratio, and expressions have been obtained for the likelihood
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ratio when it exists.

Thus, the first part of the program is complete. We now move to the

second part, which is equally important: approximation and implementation of

the likelihood ratio.

3.5. Discrete-Time Approximation and Implementations

The results given above are for continuous-time observations. The

expressions for the likelihood ratio given in Theorem 3.7 are very general.

but in that form are simply mathematical results. To be useful, they must be

converted into signal detection algorithms. The goal is to obtain an

algorithm that meets the four criteria discussed in Section 3.1:

(1) Likelihood-ratio-based;

(2) Information-preserving;

(3) Implementable;

(4) Adaptive.

Criteria (1) and (2) will be met by constructing tro algorithms that are

discrete-time approximations to the general expressions for the likelihood

ratio obtained in Section 3.4 above. One of these algorithms, which will

eventually be denoted as Version I, requires only knowledge of the noise

covariance matrix; it is completely adaptive to the signal-plus-noise process.

Moreover, it is easily implementable. Version I thus satisfies all four of

the above criteria.

Version II algorithm requires prior knowledge of a two-variabic function

(the drift of a diffusion). If a model giving this function is not available,

then the function can be estimated from a "training" ensemble of signal-plus-

noise data. Thus it is not adaptive and is more difficult to implement, but

can be expected to generally perform better than Version I when it can be

implemented.
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One further criterion will also be imposed on the implementation: a

partially-recursive formulation.

We now proceed to the development of these two detection algorithms.

Version I. fully adaptive, is based on the following additional assumptions:

(A.1) The noise process has multiplicity M=1. and the process (Bl(t)) is

the standard Wiener process (W(t)); thus N(t) = tJ F(t,s)dW(s).

where F is a Volterra kernel with 10 1 F2 (ts)dsdt <

(A.2) The signal-plus-noise process can be represented as (Y(t) =

tSo F(t.s)dZ(s). where the process (Zt) is a diffusion with respect

to a Wiener process W and has memoryless drift function, so that

Z(t) = t O[Z(s)]ds + W(t), (5.1)

where P{w: f88[Z(ws)]ds < } = 1.

The second algorithm. Version II. assumes (A.1) above and that the signal-

plus-noise process can be represented as Y(t) = f F(t.s)dZ(s), where

t
(A.3) Z(t) = f o[s. Z(s)]ds + W(t). (5.2)

0

12 2

eagain is a Wiener process, and P{o: f0o [s. Z(w,s)] ds <

The assumption (A.1) is reasonable from several viewpoints, such as the

fact that all stationary processes and all discrete-time processes are of unit

multiplicity and that any Gaussian vector can be represented as the result of

a lower-triangular matrix operating on white Gaussian noise. It is also known

[24] that unit multiplicity processes are dense (in L2[dPdt]) in the class of

m.s. continuous processes. One can show that the assumption (A.1) is

satisfied whenever the noise process has a proper canonical representation
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N(t) = F(t,s)dB(s), where the variance of (B(t)) is an absolutely

continuous function on [0,1].

To clarify the significance of the assumptions (A.2) and (A.3), it is'

necessary to review well-known material on the representation of processes

(Zt) such that PZ < < PW" From Theorem 7.11 of [9], any such (Z t) must be a

process of "diffusion type":

t
Z(w,t) = f r[s, Z(i,-)]ds + W(w,t) (5.3)

0

where (Wt) is a Wiener process adapted to a(Z), and -Y is a function on

[0,l]xCo[O.1] such that

i) for all s in [0,1]. -r(sx) does not depend on x(t) for any t > s;

12
ii) P(W: fJ-Y [s,Z( ,-)]ds < w} = 1.

Using the results of Theorem 3.2 above, it can be seen that assumption (A.3)

reduces to the assumption that the function r is memoryless. Of course, there

is a very large class of processes such that this assumption is satisfied.

Note that this is emphatically not equivalent to the assumption that the

observed signal-plus-noise process is the solution to a stochastic

differential equation. To be precise, given that assumption (A.1) is

satisfied, the assumption (A.3) states that the signal-plus-noise process can

be represented as a filtered diffusion.

Assumption (A.3) is of course much weaker than (A.2); the latter assumes

not only that the process Z defined above is a diffusion, but that the drift

function is time-homogeneous: [s, Z(,-)] = O[Z(w,s)] a.e. dP(w)ds.

The reduction of the problem to the class of processes satisfying (A.2)

is motivated by the goal of developing a likelihood-ratio-based detection

algorithm that can operate without any prior knowledge of the signal
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properties: a completely adaptive algorithm.

An algorithm will now be described, assuming (A.l) and (A.3), and uniform

sampling of the continuous-time waveform. For the detection problem as

defined above, applying Theorem 3.7 and known results for the Wiener process

(see, e.g., [9] or [8]). the general form (under a mild restriction) of the

likelihood ratio on L2[0,1] is

[d S+N /dN](X) = lim exp [An(6n(m[x]))]
n

where 0 = tn < tn < < tn = T is a partition of [O.T] such that

0 1 2 n

SuPI tJi* - tn -_0. 6n(x) = (x(tn). x(t). ..... x(tn)). and

n-1
An[6n[m(x)]] = I o(i, m[x](tn))(m[x](th 1 ) - m[x](tn)) (5.4)

i--0
n-i1

- (1/2) 2 a2(i. m[x](tn))(tn - t n

i -O i i +

m is defined (as m) in part (2) of Theorem 3.7, and the limit exists in the

norm of LI["N].

It should be noted that this approximation does not arise from sampling

of the continuous-time observation. The situation is much more complicated;

the approximation is obtained by sampling of the continuous-time function

m(x). where x is the observation. The difficulty is that m will generally not

be known.

The representation of (N(t)) by N(t) = t F(t.s)dW(s) yields that

RN = FF*, where F is the integral operator with F(ts) as its kernel, and F*

is its adjoint. This can be used to provide an approximation to the function

m(x) appearing in (5.4) that does not require calculation of eigenvalues and

eigenvectors.
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F irst, notice that <ej f > = {T t~ F(s, u)du e =d

t {T F(s~u)e (s)dsdu = [LF *e ](t), where ELf](t) ft fvd.L is considered

as a map from L2[OI ] into C[O.l]. Using this, the expression for m given in

(2) of Theorem 3.7 can be rewritten as

k

mix]O) = lim ELF* 7 <e .x> i 1 t) (5.5)
k-i- 1

= lim [LF*RNIPkx](t)

where Pkx is the projection of the function x on the subspace in L2[O.1]

spanned by {e. .... e k. Since 1 = F-F the preceding becomes m[x](t)

lim [LF-1Pkx](t).
k-)

A basic difficulty is that (with probability one [10]) the observation x

will not be in the domain of the operator F -
, so that F x is not defined. In

fact, LF- 1 will in general not be a bounded linear operator. However, for

almost all sample functions x (either from noise or signal-plus-noise).

m[x](o) is a continuous function on [0.1]. Thus the map m is a linear operator

from L2 [0,1] into C[Ol] whose domain includes (with probability one) all

sample functions of the noise and signal-plus-noise processes.

The difficulty in implementation of the approximate likelihood ratio

(5.4) will lie in determining the function a and linear operator m. a is a

parameter of the signal-plus-noise process, and its estimation is a problem of

considerable interest in stochastic processes (as the drift of a diffusion)

and in stochastic filtering. The possibly unbounded linear operator m, mapping

L2 [0,l1] into C[0.1], depends only on the covariance function of the noise. If

a is known or estimated, and if the noise covariance function is completely

known, including its orthonormal eigenvectors and associated eigenvalues, then
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the preceding expressions can be used to obtain a discrete-time finite-sample

approximation to the likelihood ratio. Here we consider such approximations

when one knows only the covariance matrix of the noise.

Let n denote the covariance matrix of the noise; one can write R n

AnF F*, where the matrix F is lower triangular and An is the sampling
-n-n -n

interval (uniform sampling). Now, the expression for m given above is of the

form

m[x](t) = lim [LF- Pkx](t).
k-im

where RN = FF*. L is the integration operator, and Pk is the projection of x

onto the subspace spanned by (e1 . ... ek}. where {e n nl} are o.n.

eigenvectors of R N. Thus, a reasonable procedure is simply to replace this

n n] L 1n nexpression by = L F- n , where 2S is the observed data vector, an-n-n-

element of IRn, and L is the summation operator in n (L xn) = Ix..

However, without further analysis and justification this would simply be

an ad hoc assumption. Thus, we now examine the relation of L F-Ix n to m(x),
n n 2S

where xn = (x(An). x(2An). X(nAn)).

By the Corollary to Theorem 3.7. (mo-Dl)(x) = x a.e. dPw(x). where 4I is

defined in Theorem 3.1. Hence, the distribution of m(N) is given by PW' so

that the vector 6n[m(N)] = (m(N)(An), m(N)(2An) ..... m(N)(nAn)) has

probability distribution P0 6 - 1 where 6n: C[O.1] - Dn is defined by 6n(X
n n -in

(x(An ), x(2An) .... x(nAn)). Similarly, defining M n(xn) = L F x n , rn(Nn)
n n-

has probability distribution P 06-1, from the definition of F . Thus, in the
Wn[nmx] n i n  n a

preceding expression (5.4) for An[6[m(x)]]. and setting ti = ,n, one cann n

replace 6n[m(x)] by m n[ n]; with respect to pN , the law of An[rn(xn)] will be

the same as that of An[,n[m(x)]].
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Next, suppose that the signal is present. In examining the relation

between the law of An, n[m(x)]] , as given by (5.4), and the law of An[rMn[xn]].

obtained by substituting Mn (xn ) for 6n[m(x)]. we make the following smoothness

assumptions:

(a) F n(i,J) t F(iAn, JAn) for all i~j n;

(b) The law of the random vector in In with (i+l) component given by

i An
SC[s,Z(s)]ds + W([i+l]An) is approximately the law of the random vector in
0

i
IRn with (i+l) component given by An I aCkAnZ(kAn)] + W([i+l]An), where

k=l

t
Z(t) = f a(s,Z(s))ds + W(t)

0

as in assumption (A.3).

Assumption (a) is essentially equivalent to assuming that

(iAj) An i AJ
f F(iA ns)F(jAn.s)ds - A I F(iAk n)F(jAn kn)0 k=l

for every i,j n. It is thus an assumption on the smoothness of {F(t.-), t

in [0,1]1. Note, however, that the smoothness requirement applies, for fixed

t, only to F(t,o) restricted to [O.t]. Similarly, (b) amounts to a smoothness

assumption on a.

kA 
n

Under "S+N' letting Yn be the vector such that yn(k) = S F(kAn,s)dZ(s).
0

n[ n] = L F-1 n
--n'-n

nn n

Assumptions (a) and (b) then give that the law of mn n] is approximately that

of 6n[m(x)], with the law of 6n[m(x)] being approximately that of the random

vector with (i+1) component
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i

A c a[kAn . Z(kAn)] + W((i+l)An).
k=1

Thus, with the smoothness assumptions (a) and (b). An[6n[m(x)]] and

An!m n[,n]] have approximately the same distribution w.r.t. "S+N. From the

nature of assumptions (a) and (b). it can be seen that (if F and a are

sufficiently smooth) the approximations can be expected to become better (for

a fixed observation time) as n increases (An decreases).

We thus have, under the assumption that a is known, and with the

smoothness assumptions on F and a. an approximation to the discretized

continuous-time likelihood ratio. The probability of false alarm (PFA)

calculated under this approximation will be exactly that which one would

obtain with a discretized version of the exact continuous-time likelihood

ratio. The probability of detection (PD) will be an approximation to that

which would be obtained using a discretized version of the exact continuous-

time likelihood ratio.

In most applications, of course, a will not be known. We now describe

two approaches to obtaining an estimate of a, corresponding to the two

assumptions (A.2) and (A.3). with both based on replacing 6 nmEx]] with mn[xn]

in the expression (5.4) for the discretized log-likelihood ratio.

First, suppose assumption (A.3) is satisfied, and that a training

ensemble of representative signal-plus-noise data is available, consisting of

i i i
K vectors {x . i K}, each having n components, with (j) = x (jA). It is

assumed that the vectors represent independent samples. One first applies the

matrix F- to each element of this ensemble. Under the assumptions (a) and
-n

i(b) above, this gives the ensemble of vectors {6Z . i K K), where

(6Zi)(j) = 1[(j+l)An - i[jAn]

So[j. ZI(JAn)] + i[j+l)An] - Wi[jAn].
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One now fixes J, and uses the K values having the above expression (i K) to

estimate a(j,i). Various procedures can be used to carry out the estimation;

(_ )([.) i n] -i fl 1
note that defining ( 6 wi+l)An] - wi[JAnJ, the set ((6W )(J). i K}

consists of i.i.d., random variables, with each Gaussian. mean zero, variance

A.

Now, with this estimated a inserted into the expression (5.4) for An . a

sample vector xn is observed. mn xn I is then formed, and used in the

expression for An to form the test statistic An[mn[xnJ].

If a representative training ensemble of signal-plus-noise data is

available, or if a is known from a mathematical model, then the above

procedure gives the preferred mechanization. The algorithm employing this

estimate of a (or using a known a) will be denoted as Version II. In the case

of non-stationary signal and noise, obtaining an ensemble of S+N data,

properly aligned, can be expected 1o be difficult. However, if the signal-

plus-noise is a stationary process, then one may opt to use a long segment of

S+N data to estimate a time-invariant a; this segment could then be much

longer than the observation time over which the detection algorithm is to

perform. It can be shown [14] that use of a time-varying a gives an exact

likelihood ratio for the discrete-time problem if the signal-plus-noise

process is Gaussian.

Suppose next that nothing is known about the properties of the signal-

plus-noise process, and that an ensemble of training data is not available.

Version I of the algorithm (5.4) is then implemented as follows, for a fixed

value of n: The observed sample vector xn is first used to estimate a time-

homogenous a; the estimated a is inserted into the expression (5.4) for An .

and then An[Mn(xn)] is evaluated. Thus, this version of the algorithm

corresponds to assumption (A.2).
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The estimation of a is made from the single observed sample vector n

--l nwhich is to be tested for the presence of a signal. One applies F to x-n

assuming that xn represents signal-plus-noise, this yields a vector 6Z, which

has the representation (under assumptions (a) and (b))
(6Z)(J+l) = AnO[Z(jAn)] + (6w)(j+I),

(6W)(j+l) = W[(j+l)An] W[JAn].

The elements of {6W(J). J K} are i.i.d. random variabies, with each

n
Gaussian, mean zero, and variance A

The preceding discussion will now be summarized. First, a is either

known or else is estimated by one of the two procedures described above when

nthe observation is an n-component vector x . The test statistic, an

approximation to the continuous-time log-likelihood ratio under the assumption

that the noise has multiplicity M = 1. then has the expression (with the

definition of An slightly changed from (5.4))

n-1 l -

An(N n) = . a(j, [(L F- xn ).])[(L Flxn) - (L F- lNn]
J-O -nn- -n-n - J+l -n-n-

n -1 2-
- An/2) I a2(j, [(L nF-nIxn. (5.6)

jnnj

n-1 l -1n n n-1
nI a(j. [(L F- xn).])((F x )j+l] - (An/2) 1 a2(j, [(L F -1 xn
J-Onn j -J-O -n-n -

If now a new data point Xn+I is observed, the approximation has the recursive

form

n+1ln+l nL (5.7)
A(x l) = A (x) + a[n, (L F x) ](F-x) (5.7)

-n n -n+ n*1

- (An/2 ) .
2 [n, (L E-Ix)n -
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The above procedure requires relatively few additional operations when a

new data point is observed. The implementation and calculation of A require

the following operations. First, the function a must be known and programmed

or estimated from the observation. Given the value of A n(x n ) and the observa-

onX (x 1 ..... Xn), one stores An ( n), N_ , ann, (L F x ) ], and
-n n

(L F-x )_ . When the data point xn+1 is received, it is only necessary to use
-n-n

the vector Nn+1 to calculate (F- .1Kn+l ' which means to cross-correlate the

n+l -1
observation vector xN  with row n+l of Fn. This number, say b is thenn+l n+l

used to form An+l(_in+1).

n 2 n

n+l n+l) An(n n 2 n](58
A (x ) = ) + acn. 2 bi]bn+l - (An/2) a2[n. I bi] (5.8)

i=1 i=l

Throughout this chapter, we have made the assumption that the noise

covariance is known. One then knows {Fn , n > 1}, and thus {F_ 1 , n 1}. As

mentioned, each new observation of a data point requires only cross-

correlation of the observed vector, an element of in+' with row n+l of F- 1

n+ 1
F-1

It is not necessary to apply the matrix F 1 to the data vector.

Implementation of the recursive form of the algorithm is done most

conveniently when a is known, or when a training ensemble of S+N data can be

used to estimate a. If one must estimate a from the observed data (Version I

algorithm), then the recursive formulation given above will need modification.

Various approaches can then be used for updating the estimate of a, depending

on the amount of storage available, etc.

The performance of the algorithm can be expected to depend not only on

the properties of the data, but also on the sampling rate and the choice of

the specific estimation procedure for estimating a. Thus, implementation for

a particular application should be preceded by an extensive study featuring

both simulated and experimental data.
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4. DETECTION IN GAUSSIAN MIXTURE NOISE

4.1. Introduction

In this section, the'results of the preceding section are extended to

nonGaussian noise processes (Nt) having a representation N(wt) = A(w)G(w.t)

a.e. dP(w)dt where (Gt) is a m.s. continuous Gaussian process, vanishing a.s.

at t = 0, and of finite Cram6r-Hida multiplicity, and A is a strictly positive

random variable that is independent of (Gt). Such noise will be termed a

"Gaussian mixture"; if also EA2 < -, then (Nt) is spherically-invariant.

As in the preceding section, we will first discuss absolute continuity

and representation of the likelihood ratio for the general continuous-time

problem. This will be followed by the description of a discrete-time

approximation of the continuous-time likelihood ratio, and its implementation.

Although the noise process is a Gaussian mixture, the signal-plus-noise

process need not be of this type. Results on absolute continuity and

likelihood ratio when both processes are spherically-invariant are given in

[25]. [26].

A general analysis of the problems of absolute continuity and likelihood

ratio for Gaussian mixture noise, with applications to the Shannon information

of communication channels, is contained in [27].

4.2. Absolute Continuity

The proofs for the results to be given closely follow those for the case

where (Nt) is Gaussian. In the latter case, the problem of absolute

continuity was solved by the following general approach. First. it was shown

that versions (and thus their distributions) of the noise and signal-plus-

noise processes could be obtained by applying the same measurable

transformation (the t function of Theorem 3.1) to a Gaussian vector martingale

Book - 2/14/90 - 35



and to a process which resembles a process of "diffusion type" [17]. Then,

available results on the Wiener process were exploited to obtain equivalence

for the measures induced by the latter pair of processes on C0[O.1]. These

results were then reflected back to the original processes to obtain the

results on absolute continuity. The existence of the measurable

transformation with the properties given in Theorem 3.1 does not require that

(Nt) be Gaussian. Thus, to extend the results on absolute continuity from the

Gaussian (N t) to that of a Gaussian mixture (N t), one must only show that the

martingale results used in the Gaussian case can be extended to the Gaussian

mixture problem. The Gaussian martingale results rely on Girsanov's theorem.

which can be summarized as follows. If (M ) is a continuous local martingale,

with natural increasing process (<M>t ), and if (ft) is a predictable process.

then (M ) defined by

tt

Mt = f f(s)d<M> + M0 s t
0

is a continuous local martingale with (<M> ) as its natural increasing

process, with respect to the measure 0 defined by

-Q exp-f fdM - 2d<M>
0

and assuming that Q is a probability.

When (Mt) is a Gaussian martingale, its continuity and the form of (<M>t)

suffice to completely specify the law induced by (Mt ); it is a transformation

of Wiener measure. This is no longer true when (<M >t) is random. In fact.

the identification of the law of (Mt) with the knowledge of (<>t ) is a

difficult unsolved problem [28]. In the case of Gaussian-mixture noise (A8 ).

where (Bt is a vector Gaussian martingale, then <AB> = A2 rB where rB is the

covariance matrix of B. and it can be shown [27] that <AR> determines the law
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of AB. This identification is done in two steps. First, one shows that if a

continuous local martingale M is such that <M> = A rM a covariance matrix

and A a strictly-positive random variable, then M = AB where B is a Gaussian

martingale independent of A. Secondly, one shows that the law of A with

respect to Q (defined above) is the same as the law of A with respect to P.

Prop. 4.1. If B EM/A. then B is a Gaussian martingale independent of A.

This result is clear; independence of A and B follows from the fact that

A is measurable w.r.t. each a-field contained in the underlying filtration.

Prop. 4.2. If U is a bounded function measurable w.r.t. all the c-fields

of the underlying filtration, then E QU = Ep U

This result follows from EQU = EpUDt . where (Dt) is the martingale

obtained by taking the conditional expectation of the Radon-Nikodym derivative

D S dQ/dP. lim Dt = 1 in L,[dP]; one successively applies this equality to
t±0

the characteristic functions of A and M.

The results to be given now are based on martingale arguments that rely

on Prop. 4.1 and Prop. 4.2. The next result is the generalization of Theorem

3.3.

Theorem 4.1. Suppose that (Yt) is a stochastic process adapted to

a(A) v a(G) v a(V). where (Vt) is any process independent of (Gt) and A.

(I) If Y(t) = S(t) + N(t) a.e. dP for each fixed t, where (St) is a

stochastic process adapted to c(N) v a(V) and with almost all paths

in H then V << vN '

(2) If (I) holds, and also Y(t) = S(t) + N(t) a.e. dPdt. then p« " AN'
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As can be seen, the above sufficient conditions for existence of the

likelihood ratio are very similar to those of Theorem 3.3. Similarly, the

representations of the likelihood ratio when these conditions are satisfied

are identical to that given in Theorem 3.7. Those representations are given

in [27]. In order to completely describe the likelihood ratio, it is

necessary to give the likelihood ratio dPz/dPAB, where (B t) is a Gaussian

vector martingale, A is a strictly positive random variable independent of

), and (Z ) is a process with paths in CM[O. 1] and such that P << P The
-t t 0 Z B

likelihood ratio dP Z/dPAB is given in [27]. along with the appropriate

definitions. The derivation and consequent statement of that general result

is technically somewhat involved, and will be omitted. Instead, we make a

stronger set of a ;sumptions that will suffice for eventual implementation.

similar to the results given in [16].

Before giving the result on likelihood ratios under these stronger

assumptions, we state an important result that is essential to eventual

implementation of the approximated likelihood ratio. In Section 3.3,

likelihood ratios (Theorem 3.7) were stated in terms of a function m having

range in Co[O.1] and domain in either IR[0.1] or L2 [O.1]. The same functions

will occur in the Gaussian mixture problem, but now one must consider the

presence of the random variable A. This is simplified by the following

result.

Prop. 4.3. Let m : I[0I] -+C [O I] be the m defined in Theorem 3.6.

when A = a. Let m': L2 ['1] -+ C[0.1] be the function mn defined in (2)

of Theorem 3.7. when A = a. Then m and m' are independent of the value-a -a

of a.

With Prop. 4.3, likelihood ratios can be obtained. The following result
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is the equivalent of Theorem 3.7.

Theorem 4.2. Suppose that (V t) is a stochastic process independent of

(N t). and that (St)is a stochastic process adapted to a(N) v o'(V) with

almost all paths in H- Then St = =1fIF cts)'O (s)iPt(s). whiere

((s)) is a(N) v o(V)-predictable and has paths a.s. in 1 2 [t ]. Definle

() to be the M-process with ith component given by Z (t,(o)=

f t#,(~wdPs)+ AB.(t~ai). PZ -«- PA13 and St+ Nt = I.ftF.(t~s)dZ.(s).

Then

(1) Suppose Yt = S t + Nta.e. dP. for each fixed t in [0,1]. Then

[duy/dvN](y) = [dZdA]M)a.e. dvN(y), where m, is defined as in

Theorem 3.6.

(2) Suppose Yt = S t + Nta.e. dtdP. Then [C4LY/dJLI(X)=

[dP~dPB](!x)a.e. d4A,(x). where rn(y) in e-has as its ith component

=~~~~ Ii( e>f e>/Xn

(3) Suppose that Yt= S t + Nta.e. dP for each t in [0,1], and that

(Y has continuous paths. Then [d.NY /CL\N](x) =[dPZ/dPA](nti~x) a.e.

CL xwhere in is defined in (2) and t : CM-[0.1] -L[0] is the

injection map.

The following result is a special case of Theorem 4.1 and Theorem 4.2.

Theorem 4.3. Let (V t) be any process independent of (N t). Suppose that

(Yt)is a stochastic process having the representation Yt = S t + Nta.e.

dPdt where (S )is adapted to aoN v 0(V). For fixed a. let (S'a) be
t

the process (S when A is fixed and A = a. and set ya E S + aC
tt t t,

Suppose that for each fixed a in range(A). (S'a) has almost all paths in

H G.Finally, suppose that A is a discrete random uariable with range in
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(at, t _ 1. Then

(a) v << VN and v << raC for euery a in (at t > 1};

dvy S _ +a_ G
(b) -- (x) = I I a.e. duduN t~l Ic(a t)(x)[ d,,a.G Nx

where I denotes the indicator function and C(a)-

{x: T,- i n 2n I X. =at).
n j=i J

Using Theorem 4.3 and Prop. 4.3. one can apply the results previously

obtained for Gaussian noise to obtain the likelihood ratio in the Gaussian

mixture case. Theorem 4.3 contains two basic assumptions that considerably

simplify the general result. One is the assumption on smoothness of the

process (St) for all a in the support of PoA- 1 . The second is the assumption

(to give the form of the likelihood ratio) that A has discrete support.

Neither is necessary, and neither is made in [27]. where the general results

are obtained. However, they are reasonable for applications, which is the

eventual aim here. Note that under the assumptions of Theorem 4.3.

2 1n 2A (u) = -il- L (x(),e.> A.
S j=l ' 1

with probability one under both P N and PS+N" by the law of large numbers; in
the case of PS+N' one uses the fact that (S t) has paths a.s. in HN.This

observation. Theorem 4.3. and Prop. 4.3 permit one to specify a likelihood

ratio for implementation quite naturally, as seen in the following section.

4.3. Approximation and Implementation of the Likelihood Ratio

Here we shall make assumptions similar to (A.1). (A.2) and (A.3) of
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2
Section 3.4. We also assume EA = 1. so that R. = R, and that A is a

discrete-random variable.

Version I of the algorithm is based on assumptions A.1 and A.2 below.

(A.1) The Gaussian process (Gt ) defining the Gaussian mixture noise process

has multiplicity M = 1, and the process (Bl(t)) is the standard Wiener

process, (Wt). Thus

N(t) = AG(t) = A fIt F(ts)dW(s),

with F a Volterra kernel such that 1OfOF2 (t s)dsdt < m.

(A.2) The signal-plus-noise process (Yt) is given by

Y(t) = J' F(ts)dZ(s).

where (Zt) has the representation

f; O[Z(s)]ds + AW(t)

a.e. dP for each t; and P(w: fO[2[Z(w.s)]ds < = 1.

Version II is based on A.1 and on A.3. below.

(A.3) Y(t) has the representation given in (A.2), but now

Z(t) = f; a[s. Z(s)]ds + AW(t)

1 2

where P{w: fOa [s. Z(w,s)]ds < = 1.

Implementations of the discrete-time approximation to this likelihood

ratio are obtained from those given in Section 3.4 for the Gaussian noise

case, as follows. Here we assume the notation of Section 3.4: EN = AF F,
-n n

and L is the summation matrix. An is the (uniform) sampling interval, and we-=n

assume an observation in n We first discuss the implementation of the
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algorithm with time-homogenous drift, with no prior knowledge of the signal-

plus-noise properties (Version I).

Step 1. Form the vector Flxn . This gives, if signal is present andnT -

with the smoothness assumptions (a) and (b) of Section 3.5. the vector

(5Zn) where (5Zn)(i+l) = An [Z(iAn)] + aW([i+l]An) - aW(ihn).

Step 2. Estimate a; for example, by computing the sample quadratic

n-1
variation of Zn; that is, (a)2

i=l

Step 3. Assuming that (6Zn)(i+l) = AnaEZ(iAn)] + a W(Ei+1]An) - W(iAn)]

for i n-1, estimate a.

Step 4. Insert a into the expression (5.4) of Section 3, for An. and

then evaluate An[ .n2xn]]/(a)2 .

Note that in this Version I of the algorithm, the estimate of a may

depend on the estimate of a. It should also be noted that the above

nestimation procedure for a assumes large n and small A

In the likelihood ratio with time-varying a, as in assumption (A.3). one

can proceed by first estimating A for each sample path of the training

ensemble, and then estimating 0(i,-) for each i n by using these estimated

values of A. Of course, a better solution would be to know a from a

mathematical model, if such a model were available.

The algorithms given in Section 3.4 are special cases of these

algorithms, obtained by setting a 1.
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5. COMMENTS ON ROBUSTNESS AND RANGE OF APPLICATIONS

OF THE DETECTION ALGORITHMS

The results summarized in this chapter, and given in detail in [17] and

[27], give a complete set of sufficient conditions and necessary conditions

for the existence of a likelihood ratio, under the assumption that the noise

process (Nt) is a Gaussian mixture process with the following properties.

(1) (N t) has a representation (AG t), where (G t) is Gaussian. A is a positive

random variable independent of (Gt). and (Gt) is m.s. continuous.

(2) N(O) = 0 with probability one.

(3) (Gt) has finite Cramr-Hida multiplicity.

These assumptions are very weak. (1) is typically satisfied in applica-

tions. (2) can be circumvented in applications by assuming that the problem

started at a time instant prior to the first sampling time. (3) is practical-

ly meaningless, since the multiplicity is permitted to be arbitrarily large.

The adjective "complete" in describing the above-mentioned results should

be interpreted as follows. The set of results obtained for this problem are

exactly those that have been known for many years when it is assumed that the

noise is the Wiener process. This is all that one can expect; the unusual

properties of the Wiener process, previously mentioned, permit one to obtain

sufficient conditions and necessary conditions for absolute continuity when

the noise is the Wiener process. Noise processes encountered in applications

typically do not have the fortuitous properties of the Wiener process.

However, through use of the spectral (Cramer-Hida) representation of second-

order stochastic processes, the Girsanov theorem and extensions, and various

results from stochastic calculus, it has been possible to obtain exactly

comparable results for the class of Gaussian and nonGaussian noise processes
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described above.

Under the same assumptions, expressions for the likelihood ratio have

been obtained when the conditions sufficient for its existence are satisfied.

These general results, however, are only mathematical results without

further work. That is, they must be given an interpretation such that they

can be implemented without requiring unrealistic knowledge of the parameters

appearing in the expressions for the likelihood ratio.

Implementation of discrete-time approximations to the exact continuous-

time likelihood ratio would require knowledge of the spectral (Cram6r-Hida)

representation of the noise. The representation will typically not be known:

its determination is well-known to be a very difficult unsolved problem (for

processes of a general type). Thus, additional assumptions are necessary to

permit implementation of the likelihood ratios as signal detection algorithms.

The basic additional assumptions are that the noise process is of unit

spectral multiplicity, and that the signal-plus-noise process is a filtered

diffusion. The first of these two assumptions can be justified from the fact

that unit-multiplicity second-order processes are dense (in a mean-square

sense) in the linear space of all mean-square continuous processes and that

all wide-sense stationary processes and all discrete-time second-order

processes are of unit multiplicity, and the second still permits one to

consider a very large class of signal-plus-noise processes under the

assumption that a likelihood ratio exists.

With these additional assumptions, two discrete-time approximations to

the likelihood ratio have been given. These approximations have very

reasonable implementations, requiring prior knowledge of the noise covariance

matrix. In the fully adaptive version, the remaining parameter of the

detection algorithm can be easily obtained. For Version II, if a good
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mathematical model is not available, then this parameter is best obtained from

a representative sample of "training" signal-plus-noise data.

the amount of training data required may be less than that required to

obtain a reliable estimate of the S+N covariance matrix; thus, the Version II

algorithm can be used in some situations where the S+N process is Gaussian but

the S+N covariance cannot be reliably determined. In many applications, as

for example the highly-complicated world of underwater acoustics, mathematical-

physical models of important signal-plus-noise processes have been sought for

many years, generally with only limited success. Even when such models are

derived, they may be the result of a great many approximations, and may

require detailed knowledge that is not typically available. It is clearly

desirable to have detection algorithms that do not rely on such models for

their effectiveness. From this aspect, the fully adaptive Version I algorithm

ip preferable.

Of course, under the assumptions used here, implementation of the detec-

tion algorithms requires only knowledge of the drift of a diffusion. For a par-

ticular application, a successful modeling effort resulting in determination

of the drift function would enable the implementation of the more powerful

Version II algorithm without the need to have an ensemble of training data.

Numerical evaluations of the two algorithms, using both simulated and

experimental data. have given encouraging results.

As can be seen from the preceding development, the theoretical basis of

these two algorithms and their implementable form give reasons to believe that

they may provide, at least in many applications, a satisfactory solution to a

long-standing and much-encountered detection problem: detection of Gaussian or

nonGaussian signals imbedded in Gaussian or Gaussian mixture noise.
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6. CONCLUDING REMARKS.

Many discrete-time finite-sample detection algorithms are obtained from

considerarl,, Uf only the discrete-time (and finite-dimeiisional) problem. If

this is done, and the data represents discretized continuous-time data, then

the problem of developing an optimally-effective algorithm is akin to that

which the blind man faces in describing the elephant. It is obviously

preferable, if possible, to develop a discrete-time algorithm based on

approximations to the likelihood ratio for the continuous-time problem.

However, likelihood ratios for continuous-time problems are inextricably

bound (if done correctly) to the problem of existence of the likelihood ratio,

or absolute continuity. Unfortunately, studies on existence of likelihood

ratios are considered to be of only mathematical interest by many engineers

concerned with systems design and by many applied statisticians concerned with

inference. This attitude may well be justified if the studies are on models

not suitable for applications, or if the results of the study are arcane

theorems left in a form unintelligible to potential users, or if the results

are expressions that require knowledge of quantities that one cannot

realistically expect to be known. As can be seen from the preceding

development, appropriate studies on absolute continuity and likelihood ratios

for continuous-time problems can be extremely important in developing

practical discrete-time detection algorithms.
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